返回

女神降临梦境

第二十一章 约定
加入书架 返回目录 查看书架
    ax^2+bx+c=0.

    a≠0,公式两边除以a。

    然后移项得到……

    伊诚挽起衣袖,手起刀落,不到两分钟就完成了一元二次方程的韦达定理的证明。

    之后来到了第二关。

    第二关从初中的二次方程进阶到了高中的3次方程。

    ax^3+bx^2+cx+d……假设x1、x2、x3是该方程的3个根{允许有重根}

    试证明:

    x1+x2+x3=-b/a

    x1x2+x2x3+x1x3=c/a

    x1x2x3=-d/a

    嗯,这个题目算比较复杂了。

    如果只拥有高中基础知识的话,解起来其实还挺头疼的。

    大部分的高中教材都不会教学3次方程的韦达定理和相关解法,一般情况下,只会用到因式分解。

    但是这点难度还难不倒他。

    这道题不用因式分解,只需要做到方程式两边的形式统一,对比系数就行。

    花费了大概十分钟的时间,伊诚咔咔两刀完美地解决掉了这一题。

    他舔了舔嘴唇。

    已经有了两道题垫底,下一问明显就进入了正餐环节。

    伊诚只觉得意犹未尽,吃了点开胃菜,开始对大餐有一些期待了。

    大餐是这样写的:

    设x1,x2,……,xn是一元n次方程f{x}=x^n+a1·x^{n-1}+……an=0的n个根{允许有重根}。

    试证明:

    x1+x2……xn=-a1;

    x1x2+x2x3+x1x3……xixk=a2;{i小于k,k是从1到n的正整数}

    x1x2……xn={-1}^n·an

    “这就是韦达定理在n次方程中的应用,”蓝冰记得这个题目,“还挺正统的证明题,解开它,会为以后伽罗瓦和阿贝尔的群论打开大门。”

    “啥?”伊诚一个字都没有听懂。

    “我也不太懂,至少现在还没接受这方面的知识。”蓝冰解释着,“虽然我最近在自学大学课程,但还没到群论这一块。”

    伊诚大惊失色。

    女神居然也会自学数学?!

    这是要逆天啊。

    虽然没听懂,也不了解什么伽罗瓦和阿贝尔,但是这并不妨碍伊诚可以证明这个题目。

    他隐约可以看到在高空中最后一宫的雅典娜在向他招手了。

    这里需要运用的最重要的一条原理是——

    根排列置换下的形式不变性。

    也就是前面两个热身题给他的启发。

    于是伊诚挥舞着这把大宝剑,快刀斩乱麻,一路披荆斩棘,取得了最终的胜利。

    他来到了第十二宫,迎娶了,呸,救回了雅典娜。

    在a6纸的最后一行写着:

    【如果你已经完成了韦达定理的完全证明的话,那么你就可以再继续学习拉格朗日的预解式了。

    这将更好的帮助你理解整个高中的代数部分,同时为你将来进入大学学习群论打下一个好的基础。

    由于a6纸的篇幅有限,这个部分我明天会再给你讲解。】

    伊诚和蓝冰两个人意犹未尽,仍然沉浸在刚才解题的喜悦之中。

    “这就是数学的魅力啊。”伊诚感叹到,“能从一个非常简单的东西入手,引出复杂而深奥的理论。”

    “那是当然。”蓝冰笑到,“要知道最开始我们一切都是从零开始的,0是最简单的。但0这个东西却是整个数学中最难最复杂的。而我们还在为了走向0而继续努力着。”

    有一句话叫做数学学到最后就是哲学。

    简直美得令人窒息。

    ……

    “你后天要不要来参加我们学校的校庆呢?”蓝冰低头羞涩的说着,“我在校庆上会演奏小提琴,如果你能来的话,或许……”

    她突然笑了起来。

    这说的是什么傻话?

    在梦境中邀请一个不存在的人。

    她真是无聊而寂寞得有些过分了。

    伊诚脸上的表情逐渐夸张起来。

    “哎?女神居然还有学校的?!”

    “当然啊。”蓝冰眨巴着眼睛。

  
手机支付宝搜索P2zPYPB74GJ即可领取作者发的红包,赶快参与吧!


淘宝双11超级红包,复制淘口令$bkb13lYsLPg$,打开手机淘宝即可领取。
若淘口令失效,请点击此处链接领取

京东双11超级红包,复制京口令¥UANeFApAs8a1nuds¥,打开手机京东即可领取。
若京口令失效,请点击此处链接领取

阅读模式无法加载下一章,请退出

返回目录

若图片章节不正常,请点击报错后刷新页面(支持最新20章报错)

若章节正常,请不要点击报错,否则会造成网站打不开

来源4:https://www.88dush.com/xiaoshuo/124/124594/51945402.html

切换来源-当前为88dushu